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AN ELECTRIC ARC IN A CHANNEL BEARING
A TURBULENT GAS FLOW

Z. M. Galeev, R. R, Ziganshin, UDC 537.527
R. Kh, Ismagilov, and A. G, Shashkov

A study of the positive column in an arc in a tube containing a turbulent gas flow is presented,
Working formulas are given for estimating the arc parameters.

There are many papers [1-3] on the theory of arc columns stabilized by laminar gas flows; major ad-
vances have been made, as is clear from the good agreement between theory and experiment for laminar or
near-laminar flow. However, the flow state may differ considerably from laminar in an electric-arc device
such as a plasma source, even though the Reynolds number is small, on aceount of the various types of in~-
stability occurring in ares, which cause fluctuations in the local parameters, According to current views 141,
an arc becomes essentially turbulent in the presence of a moderate gas flow from the point where the positive
column meets the turbulent boundary layer, The column in such a flow is described by a complicated system
of equations difficult to solve, However, various simplifying assumptions can provide solutions that incorporate
the major processes, which can enable one to calculate the electrical and thermal characteristics with reason-
able accuracy.

1. Formulation and Solution

Here we consider an arc column in a cylindrical channel containing a turbulent gas flow; let pv =pv +
(ov'), pu= (pu)', E=E +E', S=S+8', and 0=0 +0', while it is assumed that the assumptions made in [1-3] apply.
In the present case, we further specify that the relaxation times of the elementary processes in the plasma
are small by comparison with the time scale of the turbulent pulsations. Then the positive column is described
by the following equation if we assume that E is constant over the cross section of the tube and neglect turbulent
heat transport along the axis, viscous dissipation, the change in the kinetic energy by comparison with the in~
put heat, the convective transfer along the flow, and the radial energy flow arising from heat conduction and
turbulence:

pvh, 85 | (ou) h, 05 1 d as B e Tt
s ‘ s — E — , 1
! 0z R or Rzr  ar (r or ) HEFE) O S-ES @
1
(1) =2nR%,{E) 5 Srdr 2
b

subject to the conditions

S, 0)=9(), 30, 2)=0, %S; 0, 2)=0, pv= const. &)

r

Estimation of the terms in the equations for the arc shows that this model applies for reasonably long chan~
nels provided that the discussion is restricted to the region of developed turbulence for low Mach numbers.
The instantaneous current and voltage are variable, so Ohm's law in (2) has been written for the effective
values, The turbulent pulsations are completely random, so the phase difference between I and E may be
taken as zero.

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol, 35, No. 1, pp. 113~120, July, 1978, Original article
submitted June 9, 1977,
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TABLE 1. The T Dependence of gy and y;

T By k4 T 291 Y1

0 2,4048 0,2159 —26 0,4592 0,4035
—2 2,1995 0,2327 —28 0,3871 0,4113
—4 2,0000 0,2500 —30 0,3247 0,4182
—6 1,8076 0,2674 —32 0,2711 0,4243
—8 1,6235 0,2846 —34 0,2264 0,4296
—10 1,4487 0,3015 —36 0,1867 0,4343
—12 1,2842 0,3177 —38 0,1543 0,4385
—14 1,1305 0,3332 —40 0,1268 0,4422
—16 0,9888 0,3477 —42 0,1041 0,4455
—18 0,8589 0,3612 —44 0,0852 0,4484
—20 0,7413 0,3735 ~—46 0,0695 0,4510
—22 0,6357 0,3846 —48 0,0567 0,4533
—24 0,5418 0,3945 —50 0,0461 0,4555

At present, we have no data on the correlation between (pu') and dS'/dr in an arc; let the correlation co~
efficient for the two be K. We assume to a first approximation that the turbulent dissipation is equal to the
turbulent transport, namely, K=const, v (ou)'? =const; we solve (1) subject to these conditions and show that
the standard deviation of the thermal conductivity is approximately

Vs = ——-———USRE,: rS.

== {4)
K V(pu)’ h,
Then (4) and (1) with the less restrictive condition Kv (ﬁu)‘2=const gives us that
oS 1 o ( o B e e
P22y ) L FES S,
0z ¢ r 0r (r ar) r or + )
We solve (2) and (5) with (3) to get
(EY=(I)[F} (4Rl + 2 1) W ()", (6)
- (1 O 7
S(r, I — An(Dn ny —(u2a® -+ b) 2], (")
()= e CEF ):1' (o 7) €xp [— (8202 + 0) 2]
where
az__it_l_ C h e anZO‘sEF e nlR%,
 Gh,' G, ' Gh, '
_ mRE 2%
oG, a '

Ay are the Fourier coefficients in the expansion of ¢(r) as a series in the function
2 (P B+ @2 . B (=D
27 (m!)>

2m

(Dn (p‘n’ f) =14

m=1

over the range 0=r=1; up are the roots of &, My, 1)=0; and &, are the eigenfunctions of the following equation,
which are bounded at r=0:

d2® 2\ dd
1+ ) € oo, 8
rdr2+(+2)dr w ®)

where this equation describes the column for uf =Rzos§2—gsR2:

F=Y A,expl—(@a*+b)2l; F,=Fexp(az);

n=1
1 2
Yo = ‘. (Dn(p’m r)rdr; 113(2):5 Fl_zdz'
[ b
From (6) and (7) we get the mean-mass values of S and h for the column:

So D gy DD

= —_—s s ©)
" aRw,(E) nR%,( E)
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Fig. 1. Radial distribution of &,.

Fig. 2. Radius of positive column { as a function of turbu-
lence parameter T (R;=5°10"3 m); curves 1-4 correspond
to (I} =20, 40, 80, and 160 A,

The heat loss through the surface as corrected for radiation is

_ S XeD
Q——Qn—()-;(l,z)+63<E>' (10)

The quantities piy, Yn, and &, were computed and tabulated; Table 1 gives the values of p; and v, for Tbetween
0 and —50, which are required in discussing the solution,

2. Particular Cases

2,1, ¢ (r)=A %1y, r). Simple calculations give

(E)=(E) = {I—(I-M)expl—2(nf a2+ b—1a2) 7)"%, 1)
S(r, 2) =< 1> ®,(n, r)/2aR%, (EY; (12)
By = by + he 1) {1— (1— M?) expl— 2 (u2 a2 + b —1@d]}°", @3)

aRo! > Vi F RE —1
M=CE)/CE)o (E)o= v+ RE—1/R) 3,
CE)o= (1) 2aR% Ay,

It follows from (11) that {E) may increase considerably in the region where the laminar flow gives way to
turbulent flow, since here we may have (Eyw > (E).

2.2, T=0, £g=0. The solution is that derived in the theory of [2]; if ¢ (r)=AJ,(,, r), then

E = E.[1— (1— M?) exp(— 232} 2)]°5; (14)
Ec :h*+ ’5;72%({?7’7 [1 '—“(1 __MZ) eXp(—QaZA}Z)]OIS. (15)

We see frzom (11)-(13) and (14-(16) that a turbulent arc tends more rapidly to the limiting situation, since
2
p{ =T > Xi.

2.3. Inthe even more particular case T =0, ¢ (r)=0, the solution agrees with the results of [1].

3. Detailed Analysis

A more detailed analysis of the positive column in a turbulent arc may be made in terms of the limiting
characteristics for a’z —; (6)-(8) give

(E)w=VMW—1+ RE/R0?5 ; ~ ()
S—AD, @, r); A — D - an
T AT T AT aReY Sy Vi —x + R,
T ' Cr . dd, . 9
=S R YT RE @ b MOTHD

We see from (16) and (17) that the properties of the column are dependent on the turbulence parameter T, which
is expressed in terms of the standard deviation in the electric field. Figure 2 and Table 1 imply that any in-
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crease in [T [ causes the steady component E= 1y Ra°’5 to decrease rapidly, in accordance with the p;(r) re-
lation, whereas the effective value (E) increases in accordance with (16), Therefore, the distribution of S
(Fig. 1) and thus of the temperature is substantially modified, with the absolute value of S at the boundary of
the column increasing, while S, and A, fall.

Equation (8) with T =T, =Ghg/T also describes a laminar cylindrical arc in a channel with a distributed
flow [5]; then T, is proportional to the gas flow rate Gy, through unit length of the channel, while the gas may
be injected (r,> 0) or withdrawn (r;<0). The results of [5] and our solutions show that a turbulent arc is
analogous to a laminar arc in a channel from which gas is withdrawn as regards the dependence of E and
@ (4;, r) on T, However, the broadening of the distribution for S and the reduction in E in a laminar column
arise from heat transport from the center to the edge by radial gas flow and also because of the rise in tem-
perature in the column, whereas in our case these effects arise from turbulent heat transport and the increased
significance of the fluctuating field component,

Calculations show that for a given | 7| =7, there is no difference between éc and (E)e for a laminar arc
with injected gas and a turbulent are; the increase in (E) and the reduction in §c as 7, increases in a laminar
arc are due to the cooling of the positive column by the relatively cold gas entering through the side of the
column and mixing by radial flow. In the present case, the effects occur beeause of the turbulent gas mixing
within the column and the rapid heat transfer to the wall,

On this basis we can interpret —77/hg as the mass G, of gas mixed into the positive column due to turbu-
lent pulsation and thus responsible for raising the electric field and reducing the are temperature, the effects
being those due to influx of 2 mass of gas 'rl?r/hs arising from the averaged radial flow, Therefore, there is a
relationship between our turbulence parameter T and the gasdynamic characteristics of the flow, in particular,
the flow rate or Reynolds number Re and the degree of turbulence £ =vu® /v.

At high temperatures, such as occur in the positive column, the density fluctuations are fairly small,
since dp/dT ~T~?; therefore, with sufficient accuracy we can put

£ = V(Et_)? Jpo.
Then
1
T = —2Reh, { pudr.

0
In the case pv=const, as is assumed here and in [1-3],

T=—p*heRe = —eh, 26, (18)
R
Then (18) enables us to put (16) as
(EY o=V + #hgRe - RE, /Ro®5. (19)

The limiting parameters for a laminar arc are independent of the gas flow rate [1-3, 5] and are equal to
the values for a flow~free arc. In our case, on the other hand, (19) shows that the field strength and other
characteristics are determined by Re, i.e., by the gas flow rate, as well as by the degree of turbulence. This
is one of the major distinctive features of a turbulent positive column.

An arc heater has the arc column occupying only part of the channel; the energy equations for conducting
and nonconducting parts of the chamber can be used with the condition for heat-flux continuity and the condition
at the wall S=—Sx to find the distribution of S outside the positive column (1=r=<1/¢):

S(r)= Ay, W3 —7)Inr—S, (20)
as well as the formula for the dimensionless radius ¢ =R/R,:
1 gp L _ 2nSRelC Vi< 4 REzE,

¢ 4 Iy @ —m)
If ¢ is known together with the distributions of (17) and (20), we can find an expression for the mass-mean
enthalpy in the arc chamber:

. Bo(1) 1 1 1 1 )]
coo = Nyl f —— — (2 — — In - — ==}
h h G2+ JT/R%O'.’(E) [1 (P«l ) ( n + n (22)

(21)

These formulas show that the plasma-flow parameters in such a chamnel are largely dependent on the
column radius; Fig. 2 shows ¢ calculated from (21) for £5=0 and d= 10~%2 m, wti~" indicates that the radius of
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Fig. 3. Field strength E-1072V -m™! as a function of gas
flow rate G in 10% kg *sec™ for (I)=80 A and d=10"2m,

the column tends to unity as 7 increases. The electric field also increases, while the mass-mean enthalpy
falls and the temperature distribution becomes flattened. Figures 1 and 2 show that the additional turbulence
can be utilized to produce a plasma flow with a uniform temperature distribution over much of the cross section,

Curve a of Fig. 3 shows the field given by (19) and (21) for £=10"%, (I)=80 A, andd=10"2 m; we also
show (points) the values of E calculated from the following formula from [6]:

E =4.21.1072 (10%G) (107%p)° '3 (1024~ g,
@ = 355 — /(102 d) -+ 5,13-1073/2/(102 d)?,

(23)

which represents the experimental data for a sectional device for p=10°-4-10% am™?, 1=40-220 A, d=0.5~3"
1072 m, G=1,5-24-10"3kg* sec™l, It is clear that (19) gives a qualitatively correct reflection of the increase
in voltage with flow rate even for € =constant; however, more precise calculation of E requires incorporation
of £(Re), and (19) and (23) allow us to write that

e =aRe %7, a=2-1074(102d)°"% ¢ (24)
A mass G¢? flows through the positive column, so we have
T=—ph7aRe’ ", (25)

Curve b of Fig, 3 has been calculated from (19) with (18) and (25). The theoretical curve agrees closely with
experiment.

A solution has been obtained for the equations for a turbulent column, and the solution coincides in par-
ticular cases with formulas for a laminar arc due to Dautov or Stine and Watson, Some features of turbulence
have been established that are not in conflict with experiment; an empirical relationship has been derived for
the turbulence of the plasma in an arc heater in relation to the Reynolds number, current, and channel diam-
eter, One expects that these results should be of value in estimating the characteristics of turbulent arcs,

NOTATION

I, current; E, electric field; p, o, ®, u*, h, 8, density, electrical conductivity, thermal conductivity,
viscosity, enthalpy, and thermal conductivity; R, I, radius and length of positive column; R,, d, radius and diam-
eter of channel; r, z, cylindrical coordinates along R and I; S=8;—S8,; S, h«, values of S; and h for r=1; hg=
3nh/ 98, 05 =980/88; C, 6, C', (C), instantaneous, mean, pulsational, and effective values of C.
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